(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
sort(nil) → nil
sort(cons(x, y)) → insert(x, sort(y))
insert(x, nil) → cons(x, nil)
insert(x, cons(v, w)) → choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0) → cons(x, cons(v, w))
choose(x, cons(v, w), 0, s(z)) → cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) → choose(x, cons(v, w), y, z)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
sort(nil) → nil
sort(cons(x, y)) → insert(x, sort(y))
insert(x, nil) → cons(x, nil)
insert(x, cons(v, w)) → choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0') → cons(x, cons(v, w))
choose(x, cons(v, w), 0', s(z)) → cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) → choose(x, cons(v, w), y, z)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
sort(nil) → nil
sort(cons(x, y)) → insert(x, sort(y))
insert(x, nil) → cons(x, nil)
insert(x, cons(v, w)) → choose(x, cons(v, w), x, v)
choose(x, cons(v, w), y, 0') → cons(x, cons(v, w))
choose(x, cons(v, w), 0', s(z)) → cons(v, insert(x, w))
choose(x, cons(v, w), s(y), s(z)) → choose(x, cons(v, w), y, z)
Types:
sort :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
insert :: 0':s → nil:cons → nil:cons
choose :: 0':s → nil:cons → 0':s → 0':s → nil:cons
0' :: 0':s
s :: 0':s → 0':s
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
gen_nil:cons3_0 :: Nat → nil:cons
gen_0':s4_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
sort,
insert,
chooseThey will be analysed ascendingly in the following order:
insert < sort
insert = choose
(6) Obligation:
Innermost TRS:
Rules:
sort(
nil) →
nilsort(
cons(
x,
y)) →
insert(
x,
sort(
y))
insert(
x,
nil) →
cons(
x,
nil)
insert(
x,
cons(
v,
w)) →
choose(
x,
cons(
v,
w),
x,
v)
choose(
x,
cons(
v,
w),
y,
0') →
cons(
x,
cons(
v,
w))
choose(
x,
cons(
v,
w),
0',
s(
z)) →
cons(
v,
insert(
x,
w))
choose(
x,
cons(
v,
w),
s(
y),
s(
z)) →
choose(
x,
cons(
v,
w),
y,
z)
Types:
sort :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
insert :: 0':s → nil:cons → nil:cons
choose :: 0':s → nil:cons → 0':s → 0':s → nil:cons
0' :: 0':s
s :: 0':s → 0':s
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
gen_nil:cons3_0 :: Nat → nil:cons
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_nil:cons3_0(0) ⇔ nil
gen_nil:cons3_0(+(x, 1)) ⇔ cons(0', gen_nil:cons3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
choose, sort, insert
They will be analysed ascendingly in the following order:
insert < sort
insert = choose
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
choose(
gen_0':s4_0(
a),
gen_nil:cons3_0(
1),
gen_0':s4_0(
n6_0),
gen_0':s4_0(
n6_0)) →
cons(
gen_0':s4_0(
a),
gen_nil:cons3_0(
1)), rt ∈ Ω(1 + n6
0)
Induction Base:
choose(gen_0':s4_0(a), gen_nil:cons3_0(1), gen_0':s4_0(0), gen_0':s4_0(0)) →RΩ(1)
cons(gen_0':s4_0(a), cons(0', gen_nil:cons3_0(0)))
Induction Step:
choose(gen_0':s4_0(a), gen_nil:cons3_0(1), gen_0':s4_0(+(n6_0, 1)), gen_0':s4_0(+(n6_0, 1))) →RΩ(1)
choose(gen_0':s4_0(a), cons(0', gen_nil:cons3_0(0)), gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) →IH
cons(gen_0':s4_0(a), gen_nil:cons3_0(1))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
sort(
nil) →
nilsort(
cons(
x,
y)) →
insert(
x,
sort(
y))
insert(
x,
nil) →
cons(
x,
nil)
insert(
x,
cons(
v,
w)) →
choose(
x,
cons(
v,
w),
x,
v)
choose(
x,
cons(
v,
w),
y,
0') →
cons(
x,
cons(
v,
w))
choose(
x,
cons(
v,
w),
0',
s(
z)) →
cons(
v,
insert(
x,
w))
choose(
x,
cons(
v,
w),
s(
y),
s(
z)) →
choose(
x,
cons(
v,
w),
y,
z)
Types:
sort :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
insert :: 0':s → nil:cons → nil:cons
choose :: 0':s → nil:cons → 0':s → 0':s → nil:cons
0' :: 0':s
s :: 0':s → 0':s
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
gen_nil:cons3_0 :: Nat → nil:cons
gen_0':s4_0 :: Nat → 0':s
Lemmas:
choose(gen_0':s4_0(a), gen_nil:cons3_0(1), gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → cons(gen_0':s4_0(a), gen_nil:cons3_0(1)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_nil:cons3_0(0) ⇔ nil
gen_nil:cons3_0(+(x, 1)) ⇔ cons(0', gen_nil:cons3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
insert, sort
They will be analysed ascendingly in the following order:
insert < sort
insert = choose
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol insert.
(11) Obligation:
Innermost TRS:
Rules:
sort(
nil) →
nilsort(
cons(
x,
y)) →
insert(
x,
sort(
y))
insert(
x,
nil) →
cons(
x,
nil)
insert(
x,
cons(
v,
w)) →
choose(
x,
cons(
v,
w),
x,
v)
choose(
x,
cons(
v,
w),
y,
0') →
cons(
x,
cons(
v,
w))
choose(
x,
cons(
v,
w),
0',
s(
z)) →
cons(
v,
insert(
x,
w))
choose(
x,
cons(
v,
w),
s(
y),
s(
z)) →
choose(
x,
cons(
v,
w),
y,
z)
Types:
sort :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
insert :: 0':s → nil:cons → nil:cons
choose :: 0':s → nil:cons → 0':s → 0':s → nil:cons
0' :: 0':s
s :: 0':s → 0':s
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
gen_nil:cons3_0 :: Nat → nil:cons
gen_0':s4_0 :: Nat → 0':s
Lemmas:
choose(gen_0':s4_0(a), gen_nil:cons3_0(1), gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → cons(gen_0':s4_0(a), gen_nil:cons3_0(1)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_nil:cons3_0(0) ⇔ nil
gen_nil:cons3_0(+(x, 1)) ⇔ cons(0', gen_nil:cons3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
sort
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sort(
gen_nil:cons3_0(
n3326_0)) →
*5_0, rt ∈ Ω(n3326
0)
Induction Base:
sort(gen_nil:cons3_0(0))
Induction Step:
sort(gen_nil:cons3_0(+(n3326_0, 1))) →RΩ(1)
insert(0', sort(gen_nil:cons3_0(n3326_0))) →IH
insert(0', *5_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
Innermost TRS:
Rules:
sort(
nil) →
nilsort(
cons(
x,
y)) →
insert(
x,
sort(
y))
insert(
x,
nil) →
cons(
x,
nil)
insert(
x,
cons(
v,
w)) →
choose(
x,
cons(
v,
w),
x,
v)
choose(
x,
cons(
v,
w),
y,
0') →
cons(
x,
cons(
v,
w))
choose(
x,
cons(
v,
w),
0',
s(
z)) →
cons(
v,
insert(
x,
w))
choose(
x,
cons(
v,
w),
s(
y),
s(
z)) →
choose(
x,
cons(
v,
w),
y,
z)
Types:
sort :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
insert :: 0':s → nil:cons → nil:cons
choose :: 0':s → nil:cons → 0':s → 0':s → nil:cons
0' :: 0':s
s :: 0':s → 0':s
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
gen_nil:cons3_0 :: Nat → nil:cons
gen_0':s4_0 :: Nat → 0':s
Lemmas:
choose(gen_0':s4_0(a), gen_nil:cons3_0(1), gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → cons(gen_0':s4_0(a), gen_nil:cons3_0(1)), rt ∈ Ω(1 + n60)
sort(gen_nil:cons3_0(n3326_0)) → *5_0, rt ∈ Ω(n33260)
Generator Equations:
gen_nil:cons3_0(0) ⇔ nil
gen_nil:cons3_0(+(x, 1)) ⇔ cons(0', gen_nil:cons3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
choose(gen_0':s4_0(a), gen_nil:cons3_0(1), gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → cons(gen_0':s4_0(a), gen_nil:cons3_0(1)), rt ∈ Ω(1 + n60)
(16) BOUNDS(n^1, INF)
(17) Obligation:
Innermost TRS:
Rules:
sort(
nil) →
nilsort(
cons(
x,
y)) →
insert(
x,
sort(
y))
insert(
x,
nil) →
cons(
x,
nil)
insert(
x,
cons(
v,
w)) →
choose(
x,
cons(
v,
w),
x,
v)
choose(
x,
cons(
v,
w),
y,
0') →
cons(
x,
cons(
v,
w))
choose(
x,
cons(
v,
w),
0',
s(
z)) →
cons(
v,
insert(
x,
w))
choose(
x,
cons(
v,
w),
s(
y),
s(
z)) →
choose(
x,
cons(
v,
w),
y,
z)
Types:
sort :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
insert :: 0':s → nil:cons → nil:cons
choose :: 0':s → nil:cons → 0':s → 0':s → nil:cons
0' :: 0':s
s :: 0':s → 0':s
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
gen_nil:cons3_0 :: Nat → nil:cons
gen_0':s4_0 :: Nat → 0':s
Lemmas:
choose(gen_0':s4_0(a), gen_nil:cons3_0(1), gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → cons(gen_0':s4_0(a), gen_nil:cons3_0(1)), rt ∈ Ω(1 + n60)
sort(gen_nil:cons3_0(n3326_0)) → *5_0, rt ∈ Ω(n33260)
Generator Equations:
gen_nil:cons3_0(0) ⇔ nil
gen_nil:cons3_0(+(x, 1)) ⇔ cons(0', gen_nil:cons3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
choose(gen_0':s4_0(a), gen_nil:cons3_0(1), gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → cons(gen_0':s4_0(a), gen_nil:cons3_0(1)), rt ∈ Ω(1 + n60)
(19) BOUNDS(n^1, INF)
(20) Obligation:
Innermost TRS:
Rules:
sort(
nil) →
nilsort(
cons(
x,
y)) →
insert(
x,
sort(
y))
insert(
x,
nil) →
cons(
x,
nil)
insert(
x,
cons(
v,
w)) →
choose(
x,
cons(
v,
w),
x,
v)
choose(
x,
cons(
v,
w),
y,
0') →
cons(
x,
cons(
v,
w))
choose(
x,
cons(
v,
w),
0',
s(
z)) →
cons(
v,
insert(
x,
w))
choose(
x,
cons(
v,
w),
s(
y),
s(
z)) →
choose(
x,
cons(
v,
w),
y,
z)
Types:
sort :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
insert :: 0':s → nil:cons → nil:cons
choose :: 0':s → nil:cons → 0':s → 0':s → nil:cons
0' :: 0':s
s :: 0':s → 0':s
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
gen_nil:cons3_0 :: Nat → nil:cons
gen_0':s4_0 :: Nat → 0':s
Lemmas:
choose(gen_0':s4_0(a), gen_nil:cons3_0(1), gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → cons(gen_0':s4_0(a), gen_nil:cons3_0(1)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_nil:cons3_0(0) ⇔ nil
gen_nil:cons3_0(+(x, 1)) ⇔ cons(0', gen_nil:cons3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
choose(gen_0':s4_0(a), gen_nil:cons3_0(1), gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) → cons(gen_0':s4_0(a), gen_nil:cons3_0(1)), rt ∈ Ω(1 + n60)
(22) BOUNDS(n^1, INF)